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Abstract
Verification tools like Dafny are slowly being adopted in
software engineering practice — if not for entire projects,
then at least for safety or security critical kernels of large
systems. Verification offers a direct to the “essential complex-
ity” of software development – building a correct system —
rather than the “accidental complexity” induced by learn-
ing how to use a particular language or toolset, with their
accompanying quirks, oddities, and idiosyncrasies.

Graduate software engineers need to be exposed to verifi-
cation tools, and the formal methods, techniques, and con-
cepts underlying those tools, even if only to be prepared
when they come across those tools later in their professional
careers. Unfortunately, we have found that many software
engineering students resist formal methods — whether due
to perceived difficulty, suspected practical irrelevance, or
overall mathematicity.
In this presentation, we will outline how Dafny can be

incorporated into a “programming first” software correctness
course.We then reflect on some particular features of Dafny’s
design, and hypothesize how relatively small improvements
to Dafny could remove some of the accidental complexity
which seems attendant with students learning the language,
hopefully allowing them to focus further on the essential
complexity of verification.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages; • Social and professional
topics → History of programming languages.
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The Toad, having finished his breakfast, picked
up a stout stick and swung it vigorously, be-
labouring imaginary animals. “I’ll learn ’em
to steal my house!” he cried. “I’ll learn ’em,
I’ll learn ’em!”

“Don’t say ‘learn ’em,’ Toad,” said the Rat, greatly
shocked. “It’s not good English.”

“What are you always nagging at Toad for?” in-
quired the Badger, rather peevishly. “What’s
the matter with his English? It’s the same
what I use myself, and if it’s good enough
for me, it ought to be good enough for you!”

“I’m very sorry,” said the Rat humbly. “Only I
think it ought to be ‘teach ’em,’ not ‘learn
’em.’”

“But we don’t want to teach ’em,” replied the
Badger. “We want to learn ’em—learn ’em,
learn ’em! And what’s more, we’re going to
do it, too!”
The Wind in the Willows, Kenneth Grahame, [14].

0 Introduction
Formal verification of software systems has been a signifi-
cant research topic for in computer science for 50 years or
more [17]. Tools such as Dafny, SAW, or SPIN are increas-
ingly mature enough to support industrial application [15,
35] but a critical barrier to adoption remains a lack of soft-
ware engineers trained in their use [13].

As formal tools for software verification have transitioned
from an esoteric research topic [26] to a set of increasingly
practical tools [24], there has been a corresponding demand
in the need for courses to teach this material to students — or
at least, if not to teach students then to encourage students
to learn the basic of verification — to expose students to veri-
fication, to encourage them to engage with verification tools,
to build some level of confidence in undertaking program
verification (and of course to lure the best students away
from research on scaled stochastic perceptrons and onto top-
ics which do not require supplementary ethical supervision
from Amnesty International).

Thus, as formal methods’ industrial use has increased, so
has their relevance to education [5, 10, 12, 19]; Zhumagambe-
tov [37] offers a relatively recent systematic literature review.
Aceto and Ingolfsdottir [2], for example, have described a
recent course at the University of Reykjavik, where students
can participate in a three week intensive formal methods
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course at first year. Yatapanage [36] describes a recent second
year course taught at De Montfort University that applied
formal methods to concurrent programming — although the
paper’s title highlights most students’ concerns when ap-
proaching this topic “Students Who Hate Maths and Struggle
with Programming”. Kamburjan and Gratz [19] showed how
a custom interactive proof tool can generate a positive effect
on student engagement; Körner and Krings[21] describe how
pedagogical changes to inquiry-based learning can support
the user of formal tools.
In some ways closest to the approach we present here,

Ettinger describes how Dafny has been used for six years
at Ben-Gurion University to support teaching refinement-
style “correct-by-construction” programming [11], and Blazy
describes a similar course based on Why3 [4]. Güdemann
describes how verification tools can even support similar
learning strategies even in applied computer science courses
taught using C [16]. Ábrahám, Nalbach, and Promies taught
satisfiability checking remotely during the pandemic [1],
and Lecomte [22] describes how B has been used to train
software engineers, and how that experience has helped the
design and improvement of B tools.

In this presentation we outline an approach to solving this
problem, based on using Dafny for Learning and Teaching
formal verification in a software engineering course. Our
work draws heavily upon the work of Noble and colleagues
[31] — in the next section we summarise their “programming
first” approach to software verification course design, and
then we reflect on how Dafny can support that approach to
student learning, and also what Dafny can learn from such
approaches.

1 Programming First
Noble et al. [31] describe a common context for teaching
formal methods as a component of a more general software
engineering or computer science programme. Traditional
formal methods courses are structured bottom up — “founda-
tions first”. This approach starts by introducing students to
propositional and predicate logic, then working up through
weakest preconditions to Hoare logics and their applica-
tion in describing and reasoning about software systems,
culminating in pencil-and-paper proofs. While effective in
high-status institutions or with highly motivated students,
for “the rest of us” this approach is often less appropriate. En-
gineering students have typically already taken compulsory
courses including Boolean algebra and logic (as mathemat-
ics) and discrete logic (as physics) during first year: another
maths or physics course is unlikely to be popular [30]. Most
computer science and software engineering programmes
are heavily based around programming; most software engi-
neering majors are keen to take practical elective courses to
develop programming skill and experience [30, 32].

In contrast, “programming first” approach [31] aims to
work top down: starting with a programming language based
tool, and using that high-level tool as a context in which to
present the key concepts of software correctness — while of-
fering the majority of students an experience that feels much
more like programming rather than like doing mathematics.

1.1 Programming First with Dafny
Although designed for the traditional approach, Leino’s Dafny
text Program Proofs [24] can be adapted for “programming
first”. Such a course can cover all the “core” features of Dafny
circa 2020, i.e. Dafny version 2.3.0, including Dafny methods
and classes (imperative, and mutable); functions and induc-
tive datatypes (immutable, finitary); pre and postconditions;
predicates (Boolean functions); assumptions and assertions;
compiled vs ghost code, well-founded recursion and explicit
terminationmeasures, patternmatching, destructors; built-in
collections (arrays, sets, maps); loops, invariants, and vari-
ants; recursive specifications of iterative programs (including
transformations between general recursion, tail recursion,
and iteration); and representation invariants for dynamic
data structures [31].
Key to adapting Program Proofs to a “programming first”

approach is that — although the textbook contains two chap-
ters of foundational material — the rest of the text does not
depend on the content of either of those chapters. In par-
ticular, chapter 2 presents the mathematical foundations of
Dafny’s program logic, based on Hoare Logic and Weakest
Preconditions, and chapter 5 presents the notion of proof
and Dafny’s constructs (function lemmas, calc blocks) that
can support programmers in making explicit proofs. Where
necessary, Dafny’s semantics can be presented informally,
without reference the formal definitions. Because Dafny is
an implicit verification system, students are not able to see
what proofs Dafny’s solver many have constructed, so they
do not need anything more than a naïe notion of proof.
Dafny’s autonomic (what Leino has called “auto-active”

[25]) verification is critical to a “programming first” ap-
proach, because it mean courses can focus on students learn-
ing verified programming, rather than teaching students
proof. In Dafny, verification is seamlessly incorporated into
development practices, rather than a separate step, and pro-
grammers (or students) work in the familiar domain of pro-
grams, rather than an unfamiliar domain of proofs. We think
of this approach as implicit verification where programmers
annotate their programs with preconditions, postconditions,
variants, invariants, as in Eiffel [28], and do not interact
directly with formal models or e.g. proof trees. This is in con-
trast to explicit verification technologies such as Coq [6, 33]
where programmers must interact with solvers by directly
building proofs and proof trees, potentially even extracting
programs from those proofs. Dafny’s implicit approach still
offers many guarantees: Dafny attempts to prove programs
totally correct by default, so recursive methods and loops
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often require programmers to give variants to prove termi-
nation, and loops in particular generally require invariants
to prove correctness. Array and pointer accesses typically
require invariants, assertions, or preconditions to ensure all
accesses are within bounds and variables are initialised and
non-null. This means that Dafny programmers (and thus
students) interact with Dafny’s underlying prover indirectly,
at arm’s length, in terms of definitions in their programs
and constructs in the Dafny language, rather than having to
learn explicit representations of proof.

More pragmatically, Dafny offers a number of advantages
over more sophisticated tools like Coq [33] or Why3 [4].
First, Dafny offers a concrete, ASCII-compliant syntax —
being restricted to ASCII means students should feel some
familiarity with the notation: students would not need to
learn how to type, let alone pronounce, relatively esoteric
characters such as 𝛼 , 𝛿 , or 𝑜 . Dafny’s syntax and semantics
being based on C♯ and Java should also be familiar. Students
can use the development toolsets they already know, such as
VS Code, Eclipse, Git — particularly important for students
who need tools such as screen readers, magnifiers, or voice
control to complete their work.

1.2 Pedagogy
Pedagogically, a course can rely on Dafny itself to provide
students rapid formative feedback — simply by requiring
students to submit their solutions via the Dafny verifier. In a
very real sense, we are able to leverage the “essential diffi-
culty” of formal verification of correctness — that not only
must students implement a correct program, but they must
also convince the Dafny prover that their implementation
is correct — to aid the students in that task. In simple cases,
where students’ focus on implementing programs, we can
directly supply students with the Dafny specifications and
the tool itself will provide feedback: either their program ver-
ifies against the specification, or it does not. Where students’
focus is on writing specifications, we can allow students to
verify their solutions against hidden “oracle” specifications,
and again Dafny can check that the students’ specifications
capture important properties described by the oracles, or
more straightforwardly, that the students’ specifications and
the oracles are mutually consistent.

This means courses can take a “flipped” approach, focused
on student learning, rather than a lecture based approach,
focused on our teaching [29]. Class meetings are centred
around a weekly series of small “mastery” questions about
Dafny and verification, served from a simple website. The
weekly questions are released at the start of each week, and
students may discuss the questions, may work in groups, ask
for answers, and make any number of attempts at answering
them — but are expected to answer the vast bulk of these
questions correctly. Class meetings allow students to dis-
cuss any of the questions with the class, and the website lets
course staff know which questions students are currently

finding difficult. Because of the very liberal rules around an-
swering the mastery questions, we can work out the solution
to any weekly question in class, and even demonstrate the
correct answer and show it verifying: if students choose not
to think and merely copy the provided answer, so be it.

Larger summative assignments also incorporate automated
feedback. Students can submit answers to the assignments
as many times as necessary: by running each submission
through the Dafny verifier, students get immediate feedback
about their submission. This feedback is quite terse (just the
number of assertions verified, or not verified) because it is
not intended to replace students’ use of IDEs or to substi-
tute for their own attempts at verification — rather it is so
students can judge their progress through the course, and
in particular, to know when they have completed each part
of each assignment. We are careful to ensure that every im-
portant concept required by the summative assignments are
covered by weekly questions before the assignment is due.
Thus, while we can discuss the summative assignments only
in broad outline, we can (and do) refer students to the rel-
evant weekly questions which we can discuss in as much
detail and at as much length as necessary.

2 Learning about Dafny
The objective of an academic course is that the students in
the course will learn something; but an equally important
outcome of a course can be that those teaching the course
will learn something things too. In programming courses,
especially in interactive tool-centric programming courses,
the interactive tool is as much a teacher as the (human)
course staff: courses are thus opportunities for tools to “learn”
about how they are used, how they are understood, which
aspects of their design work well (or otherwise) [22].

2.1 Methods vs Functions
Consider a Dafny amethod and function to add two numbers:

method addM(a : int, b : int) returns (c : int) {c : =a+b;}
function addF(a : int, b : int) : int {a+b}

The syntax for declaring the return values are different
(returns vs : ); the syntax for actually returning the results
are different; a final semicolon is mandatory in the method
and forbidden in the function.

The issue here is that Dafny is not an expression language:
rather Dafny’s underlying conceptual model separates state-
less pure functions, and stateful imperative methods, and
these are really quite different. The semicolon terminates
imperative statements, which is why a semicolon is needed
in the method, and why a semicolon is not permitted in the
function.

2.2 Ghost Function Method
Dafny’s declaration syntax has been changed recently [8]:
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Old New
function ghost function

predicate ghost predicate

function method function

predicate method predicate

The old syntax overloaded method, to mean both a method (as
against a function) and executable code (that would be com-
piled) as against verification-only code (that would not be
compiled). Verification code can depend on executable code,
but executable code may not depend on verification-only
code. This overloading was rather confusing, and certainly
made it difficult to explain the pure function vs. imperative
method distinction. The new syntax is a great improvement:
the keyword ghost marks out verification-only code; in the
absence of a ghost qualifier, all functions, methods, and pred-
icates are consider executable only code, and consequently
compiled.

2.3 Opaque Methods and Transparent Functions
Methods and functions then perform very differently in the
verifier:

var m : = addM(x,y);

var f : = addF(x,y);

assert m == x + y; //Fails to verify

assert f == x + y; //Verifies

Dafny verifies the assertion on line 4, because functions are
incorporated into the verification context. Dafny fails to ver-
ify the assertion on line 3, however, because methods are
always abstracted by their postconditions, and the decla-
ration of addM omits postconditions. There are reasons for
these choices, but they do make the language more difficult
to learn — especially as declaring addF as an opaque function

rather than just a plain function would also prevent line 4
from verifying, unless the function declaration was explicitly
annotated with the necessary postconditions.

2.4 If Else If Then Else
Dafny’s pure expressions and imperative commands have
different syntax for emotionally similar constructs. Impera-
tive code uses if without then with an optional else clause,
while pure expressions use if. . .thenelse.

method schrodingerM(cat : bool) returns (status : string) {

if (cat)

{ status : = "alive"; } else

{ status : = "dead"; }

}

function schrodingerF(cat : bool) : string {

if cat then "alive" else "dead" }

Here semantic consistency (and perhaps, taking imperative
syntax directly from C, and the functional syntax directly

from Haskell) has been chosen over syntactic consistency:
there’s no reason why both syntaxen could not use then at
least! This design is fine as far as it goes, and explainable
phylogenetically, but also causes significant confusion in
practice, and makes refactoring code more difficult than it
needs to be.

2.5 Overloading Curlies
To see the difficulties with refactoring, imagine editing the
schrodingerF function to turn it into a method:

method schrodingerM3(cat : bool) returns (status : string) {

status : = if cat then { "alive" } else { "dead" };

}

Unfortunately this code is not correct, and attempting to com-
pile or verify it results in an error such as “RHS (of type
set<seg<char>>) not assignable to LHS (of type
string) Resolver”. The problem here is that even though
the body of M3 counts as a method, the if. . .then. . .else
nested inside it establishes a (syntactic) expression context.
Within expression contexts, curly braces {} are used to de-
limit sets, rather than for grouping as in method contexts –
so { "alive"} is a (singleton) set of strings, rather than just
a string.

2.6 Constant Variables
The following code attempts to declare a constant and a
variable in three different contexts: inside a class, a module,
or a method:

class Test {

var question : string;
const answer : int;

}

//module level

const answer : = 42;

var question : = "what␣do␣you␣get";

method test() {

var question : string;
const answer : int;

}

Compiling this code produces the error that “fields are
not allowed to be declared at the module level”
which is fine, especially as many other languages have such
a restriction. Both var and const declarations work fine
inside a class. Inside a method, however, only var decla-
rations are permitted, not consts: the error message that
“this symbol not expected in Dafny” only serves to
increase the confusion.

2.7 Let Variables
Many of these difficulties we’ve discussed so far relate to the
way the underlying semantic model separating imperative
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and functional code works in Dafny. To a first approximation,
we can explain this using a conceptual model that imperative
code requires semicolons to mark state transitions, and can
update variables: functional code can read variables but not
update them, and cannot use semicolons because functions
are evaluated within one temporal heap instant.

Unfortunately, that explanation only holds so far, because
Dafny, rather than e.g. importing Haskell’s let expression
syntax:

let x = 7 in x * x

to name a subexpression value within a containing expres-
sion, Dafny overloads some existing syntax:

var x : = 7;

x * x

Here var introduces a constant, the semicolon is purely syn-
tactic as there is no state change, and pedagogically one must
divert from phylogeny to apology.

2.8 Mutable Object Structure
Dafny is one of the few tools that can verify programs built
from composite structures of mutable objects using class
invariants and representation sets. In practice, this requires
either explicit definitions of “Valid” and “Repr” attributes
[24] which are verbose and complex, or implicit definitions
generated via the “autocontracts” attribute [23] which are
concise but opaque. Few students were able to use either
mechanism effectively. Perhaps by building on work verify-
ing Rust programs, such as Prusti [3] and RustBelt [18], it
should be possible to add ownership annotations to fields
and parameters, to check those annotations as with Rust’s
borrow checker [9, 20, 27] and thus extend the implicit defi-
nitions already generated by autocontracts.

2.9 Verification Debugging
Much of the work of verifying Dafny programs involves
students annotating their code — adding require and ensure
clauses and assertions until the verifier has enough infor-
mation to discharge its proof obligations. Students find this
hard because it is not obvious what Dafny “knows” at any
given program point: which assertions Dafny is able to prove,
which assertions Dafny is able to refute, and which asser-
tions Dafny is unable to answer (i.e. where the prover times
out). We also observed cases where Dafny is unable to verify
an assertion because it does not have enough information
about variable values –— this is particularly prevalent in
code where e.g. students have forgotten to write method
postconditions, or have not realised a particular postcon-
dition is necessary. This manifests as Dafny being unable
to verify an assertion about a method’s return value, and
simultaneously unable to verify the negation of that same
assertion. Even good students find this situation intensely
frustrating. Ideally Dafny would be able to give programmers

more information about what it knows, e.g. by querying its
underlying solver [7].

3 Conclusion
116. You think you know when you can learn,
are more sure when you can write,
even more when you can teach,
but certain when you can program.

Epigrams on Programming, Alan Perlis, [34].

In this presentation, we’ve outlined a working hypothesis
for the design of a Dafny course. We followed a “program-
ming first” approach, aiming to minimize the amount of
explicit theory, explicit proof, and explicit metatheory stu-
dents needed to understand, to make space for developing
informal understandings or expectations for the core activ-
ities of verification in Dafny — viz. writing pre- and post-
conditions, loop invariants, and guide assertions, as required.
We’ve also reflected on some of the more accidental diffi-
culties students found while learning Dafny, and speculated
that Dafny may be able to learn from their experience to
make learning easier in future. We consider this approach
was a success, and hope it may be useful to others planning
similar courses.
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