
The Importance of Being Eelco1

Andrew P. Black # Ñ2

Portland, Oregon, USA3

Kim B. Bruce #Ñ4

Pomona, California, USA5

James Noble #Ñ6

Creative Research & Programing, Wellington, NZ7

Abstract8

Programming Language Designers and Implementers are taught that:9

semantics are more worthwhile than syntax,10

that programs exist to embody proofs, rather than to get work done,11

to value Dijkstra more than van Wijngaarden.12

Eelco Visser believed that, while there is value in the items on the left, there is at least as much13

value in the items on the right. This short paper explores how Eelco Visser embodied these values,14

and how he encouraged our work on the Grace programming language.15

2012 ACM Subject Classification Software and its engineering → Syntax; Software and its engin-16

eering → Semantics; Software and its engineering → Object oriented languages; Software and its17

engineering → Translator writing systems and compiler generators18

Keywords and phrases Eelco Visser, Grace, syntax19

Digital Object Identifier 10.4230/OASIcs.CVIT.2016.2320

Funding James Noble: This work is supported in part by the Royal Society of New Zealand Te21

Apārangi Marsden Fund Te Pūtea Rangahau a Marsden, and Agoric.22

1 Introduction23

2010 was a long, long time ago, if not in a galaxy far, far away. Barack Obama had been24

president for a couple of years, Boris Johnson was onto only his second wife, and the idea of25

Donald Trump as a political figure was far from the mind of even the most fevered cartoonist.26

The programming languages landscape appeared moribund — especially for academics27

who were teaching introductory programming courses. According to the TIOBE index [31],28

Java, C, and C++ were the three most popular languages between 2007 and 2017. Python29

was slowly bubbling up (from 8 in 2007 to 5 in 2017), and the PLT Scheme project was just30

starting the process of changing the name of their language to Racket [1].31

Adopted with alacrity during the first decade of the 21st, Java had become a lingua franca32

for teaching and research, and had been widely adopted in industry [38]. In 1998, Java 2 was33

a relatively small language, with a fairly conventional syntax, and a collections library. By34

2010, Java 5 — the then-most-recent major version of Java, which introduced generics — had35

been available for six years. The next major Java version, Java 8 — which supported lambdas36

and streams — was still four years in the future.37

This was the context in which the three authors embarked on the Grace project, and in38

which Eelco Visser embarked on the Spoofax Project.39

1.1 A Short History of Grace40

As teachers and academic researchers, we were faced with finding a language for our teaching41

and research [14, 17, 24, 30, 37]. For teachers, such a choice should be pedagogical: how many42

© Andrew P. Black and Kim B. Bruce and James Noble;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:apblack@pdx.edu
https://orcid.org/0000-0003-0014-6483
mailto:kim@cs.pomona.edu
https://orcid.org/0000-0003-0730-937X
mailto:kjx@acm.org
https://orcid.org/0000-0001-9036-5692
https://doi.org/10.4230/OASIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


23:2 The Importance of Being Eelco

languages, what kinds of languages, and to what level of expertise should we expect computer43

science or software engineering graduates to know? For programming language designers, the44

choice is aesthetic: what values or design philosophy does a programming language embody,45

and are they the values and philosophy we hope to impart to our students? Pragmatic46

considerations are also in play: while high-prestige institutions can teach and conduct research47

in more-or-less whatever language they like, smaller or less prestigious institutions have48

more limited expertise, time, and resources, and every additional programming language49

imposes a cost. For researchers, students and teachers, programming languages are human50

languages [26]: they are used to communicate between people as much if not more so than51

to communicate between people and machines. We use programming languages to share and52

explain ideas. There are practical limits on how many languages people are able to implement,53

to understand, or even to parse. The size and complexity of a language also matters: there54

are limits to how much of a language can be taught in a one-term or one-semester course55

(both a first course, and a course used to introduce a new language later). In 2010, Java 556

seemed to be pushing those limits, if it had not already exceeded them. Finally, the choice of57

language is also ideological: should it be procedural, functional, or object-oriented? Should58

it be statically typed or dynamically typed, or something in between? Should it be designed59

for its purpose, or chosen from a menu of “industrial strength” languages?60

The question of which language to use for teaching came to a head at ECOOP 2010 in61

Maribor. In hallway conversations, we asked ourselves, as language designers and implement-62

ors, whether or not we should be working on a language targeted at our own needs? After63

all, developing languages was becoming easier, thanks to common runtime environments64

like the JVM and CLR, and IDEs and language workbenches like Eclipse, JetBrains MPS,65

and the PLT Scheme/Racket tooling. It seemed (after a beer or too) that, just as Haskell,66

and before that Algol, had been built by teams of academics, it might be possible to design67

and implement a new language suitable for teaching, and usable as a base for research, as68

a neutral cooperative effort amongst academics and not tied to particular companies or69

projects.70

After an initial flurry of interest sparked by a “Manifesto” published at SPLASH 2010 [4],71

the task of designing Grace was taken on by Black, Bruce and Noble, the authors of the72

present paper. We met weekly in cyberspace, and less frequently in person. We also presented73

progress reports and requests for feedback at IFIP WG2.16, and at workshops organized in74

conjunction with major programming conferences.75

1.2 A Short History of Spoofax76

The initial version of Spoofax was designed by Kats and Visser as a language workbench for77

simplifying the development of new domain-specific languages. Implemented as plug-ins to78

Eclipse, Spoofax integrated a variety of tools: SDF2 [36] for specifying grammars, generators79

of customizable editor service descriptors based on the syntax, and (initially) the Stratego80

program transformation language [6] to describe semantics using re-write rules. These81

individual tools had been long in gestation; Stratego in particular went back to Eelco’s time82

as a postdoc at the Oregon Graduate Insitute in the late 1990s.83

Spoofax evolved to encompass additional tools, in particular the DynSem [35] language84

for specifying dynamic semantics. Behind all of these tools was Eelco’s drive to bring the85

power of modern computers to the task of language implementation. Twenty-first century86

programmers, for example, have come to expect an IDE with a robust set of language-specific87

editor services. Without such tooling, a new language, whether domain-specific or general-88

purpose, would struggle to gain a toehold. Eelco saw that by capturing a language design in89



A.P. Black and K.B. Bruce and J. Noble 23:3

a series of DSLs, much of the gunt work of producing an implementation and he associated90

toolsing could be automated.91

That, at least, was his vision (from our perspective, as outsiders). Could it be realized?92

2 A Little Grace93

Our subject here is Eelco as much as Grace, so we will limit ourselves to describing the94

features of Grace relevant to our collaboration with Eelco and his group. We refer those95

interested in a more complete description of Grace as it stood around the time relevant to96

this article to the short papers presented at SIGSCE [8] or IEEE CSEE&T [28].97

2.1 Objects and Classes98

A Grace object is created by executing an object constructor, which is a special kind of99

expression introduce by the reserved word object. Each time an object constructor expression100

is evaluated, a new object is created and returned. Here is an example:101

102

object {103

def name = "Fido"104

var age := 0105

method say(phrase : String) {106

print "{name} says {phrase}"107

}108

print "{name} has been born."109

}110
111

The object created by executing this constructor contains a method say and two fields;112

def name defines a constant (using =), while var age declares a variable, whose initial value113

is assigned with :=. New values can be assigned to variables, also with :=. When an object114

constructor is executed, any code inside its body is also executed, so the above object115

constructor will have the side effect of printing “Fido has been born.” when the object is116

created. This example also shows that strings can include expressions enclosed in braces: the117

expression is evaluated, converted to a string, and inserted in place of the brace expression.118

Of course, to be useful, the object created by executing an object constructor typically119

needs to be bound to an identifier, or returned from an enclosing method. For example,120

121

method dog(n:String) {122

object {123

def name is public = n124

var age is public := 0125

method say(phrase : String) {126

print "{name} says {phrase}"127

}128

print "{name} has been born."129

}130

}131

132

def fido = dog "Fido"133

fido.say "Hello"134
135

CVIT 2016



23:4 The Importance of Being Eelco

will create an object and bind it to the name fido, and then request the say method on136

that object. The constructor will print “Fido was born.” and then the request of the say137

method will print “Fido says Hello”. Grace uses the term “method request” in preference138

to “message send”, because “sending a message” might be misinterpreted as referring to139

a network message. We prefer “request” over “call” to recognise that the receiver must140

cooperate in responding to the request.141

The construction in the above example — a method whose body is an object constructor —142

plays the same role as a class in a language like Python: it creates an object that can be143

parameterised by the arguments to the method (here, the name of the dog). Grace has a144

class construct to make this more convenient, but classes are second-class: class is nothing145

but a shorthand for a method that returns a freshly-constructed object. The code below is146

exactly equivalent to the code above.147

148

class dog(n:String) {149

def name is public = n150

var age is public := 0151

method say(phrase : String) {152

print "{name} says {phrase}"153

}154

print "{name} has been born."155

156

}157

158

def fido = dog "Fido"159

fido.say "Hello"160
161

Grace also has a trait keyword, which is similar in function to class: it defines a method162

that returns a freshly-constructed object. The difference between trait and class is that the163

object created by a trait may not contain any fields. The purpose of a trait object is to164

package-up a bundle of methods so that they can be reused in another object.165

2.2 Syntax and Layout166

As you can see from these examples, Grace’s syntax is a relatively conventional mix of the167

“curly bracket” style of C and the keyword style of Pascal. Declarations and code blocks are168

delimited by {. . . } rather than begin. . . end, but declarations are marked by keywords (e.g.,169

def, var, method). We hoped that this would make the syntax clearer to novices, as well as170

teaching them important vocabulary. Types follow identifiers after a colon, and assignment171

is := rather than =, so Grace writes var x:Number := 52 rather than int x = 52. This makes172

it possible to omit types entirely if that is what the instructor prefers. Control structures173

intersperse keywords between the components: “if (flag) then { }” rather than “if (flag) { }”.174

Control structures are not built in; instead they are methods that use Grace’s multiple-part175

method names.176

It seemed unnecessary and ugly to require parentheses around a block that is already177

delimited by braces, or around a string that is already delimited by quotes. Consequently,178

many request arguments don’t need to be parenthesized; arguments are enclosed in parentheses179

only when necessary to avoid ambiguity or to promote readability.180

As well as using braces to indicate the boundaries of code blocks and declarations, Grace181

requires that code layout must be consistent with these boundaries. That is, indentation must182



A.P. Black and K.B. Bruce and J. Noble 23:5

increase after an opening brace, and return to the prior level with (or after) the matching183

closing brace. Statements may be separated by line breaks or by semicolons:184

def x =
mumble "3"
fratz 7

while {stream.hasNext} do {
print(stream.read)

}

def x =
mumble "3"
fratz 7;

while {stream.hasNext} do {
print(stream.read)

};

185

Andrew ▶The above example relies on the rule that indentation indicates a continuation line, which186

we don’t explain until 2 paragraphs further on◀ Kim ▶If we leave in the second example above, put in187

all semicolons to make the idea clearer.◀188

Indentation is not purely a matter of consistency. It is also used to distinguish between a189

single request of a method with a multi-part name, and multiple requests of methods with190

single part names. Consider Grace’s “if(_)then(_)else(_)” control structure. The body of191

the code block that forms the argument for the then part should be indented more than the192

line that contains the opening {, and the closing } is at the same indentation as the line that193

contains the opening {. (See the left column below.) Because there is no line break after the194

first }, the else(_) cannot be a separate method request.195

Because indentation is also used to indicate a continuation line, an alternative format for196

our example is to indent the then and the else, in which case the whole if(_)then(_)else(_)197

will be treated as a single logical line, as shown in the center column below. This format is198

appropriate only when the code blocks are small.199

A consequence of these rules is that lining everything up on a common left margin is200

not a valid way of formatting a single if(_)then(_)else(_): such a layout will be interpreted201

as three separate method requests: an if(_), a then(_), and an else(_), shown in the right202

column.203

if (condition) then {
doThis

} else {
doThat

}
theFollowingStatement

if (condition)
then { doThis }
else { doThat }

theFollowingStatement

if (condition)
then { doThis }
else { doThat }
// three separate requests

204

2.3 Nesting and Inheritance205

As in most object-oriented languages, Grace objects and classes can inherit from one another.206

For example, we can define a simple object out that inherits from a SuperClass:207

208

class superClass {209

method m { "in superclass." }210

}211

212

def out = object {213

inherit superClass214

method foo { print (m) }215

}216

217

out.foo218
219

CVIT 2016



23:6 The Importance of Being Eelco

Grace follows Java and many recent languages in allowing the programmer to elide self in220

method requests. The m in print(m) in method foo is actually shorthand for self.m. Notice221

how method m must be inherited by object out for this code to work.222

Grace supports reuse in two ways: through inherit statements and through use statements.223

Classes can reuse the attributes of a single superclass via an inherit statement, and can reuse224

the methods bundled in multiple traits via use statements — this form of multiple inheritance225

is benign because traits are stateless. Method renaming and method exclusion is permitted226

for both kinds of reuse [27].227

Grace’s objects — like those in most contemporary object-oriented languages, arguably228

going back to Andrew ▶Simula 67 ? and ◀BETA [25] — also can be lexically nested. For229

example, we could define a second object inner that is lexically inside the object out:230

231

def out = object {232

method m { "in enclosing object." }233

def inner is public = object {234

method foo { print (m) }235

}236

}237

238

out.inner.foo239
240

Now the method foo is inside two objects: the object inner and the object out. What then is241

the meaning of the unqualified m in print(m)? We can see that it cannot mean self.m because242

self — the object inner — does not have an m. We deduce that it must mean outer.m, that is,243

the m defined in the object lexically surrounding self.244

The devil is always in the details, or rather the ordure is in the orthogonality. We have245

adopted three features, seemingly orthogonal, and seemingly useful: inheritance, nesting,246

and implicit self. What if a program attempts to use all three mechanisms at the same time?247

248

class superClass {249

method m { "in superclass." }250

}251

252

def out = object {253

method m { "in enclosing object." }254

255

def inner is public = object {256

inherit superClass257

method foo { print (m) }258

}259

}260

261

out.inner.foo262
263

Which m does the method foo invoke: the m in the lexically-enclosing object outer, or the m264

inherited from superclass?265

This potential ambiguity is common across many object-oriented languages — with as266

many different solutions as there are languages [5]. Java uses “up then out” semantics, and267



A.P. Black and K.B. Bruce and J. Noble 23:7

thus would invoke m inherited from the superclass. Newspeak uses “out then up”, so would268

invoke m in the enclosing object. As a language designed for education, Grace simply bans269

such ambiguous requests, requiring that the programmer resolve the ambiguity by writing270

self.m or outer.m [27].271

As Tony Hoare explained almost fifty years ago:272

The principles of modularity, or orthogonality, insofar as they contribute to overall273

simplicity, are an excellent means to an end; but as a substitute for simplicity they274

are very questionable. [21, p.7]275

The issue is not just simplicity vs. orthogonality, but rather where and when does complexity276

appear, and whether orthogonality increases simplicity, incubates complexity, or both.277

3 Grace in Spoofax278

The original goal of the Grace project was to produce a language specification, not a language279

implementation [4, 3, 9]. While at least one implementation would be essential even to280

guide the process of writing the specification, we hewed to the 20th century ideal that a281

programming language should be implementation independent.1 Build it (the specification),282

we thought, and they (the implementors) will come. How naïve we were!283

3.1 SDF2 Grace Parser284

But come they did, or rather, Eelco Visser and his Spoofax team came: notably Master’s285

student and doctoral students Vlad Vergu and Luis Eduardo de Souza Amorim. We recall286

Eelco attending, slightly bemused, the meeting at ECOOP 2010 where the Grace project287

was mooted. He was too wise to sign on to the SPLASH 2010 “Manifesto” [4], but as one of288

the early forces behind IFIP WG2.16 he was certainly aware of the Grace design effort. By289

the time of the first official meeting of WG2.16 (in London, in February–March 2012), the290

first iteration of Grace’s design was complete. In an email exchange Andrew ▶with whom?◀291

following up on a “conversation after the pub” Eelco was interested in becoming an early292

implementor, going so far as to say:293

Rather than farming this out to a student, I’m planning to make it my ‘trying out294

new features of Spoofax and learning about design choices in (OO) language design’295

project, with all the risks associated with that, so don’t hold your breath.296

Eelco was a good as his word. Working off an early grammar for Grace (at the time,297

self hosted via a parser combinator library within Grace itself), by OOPSLA at the end of298

the 2012, Eelco had the bones of a Spoofax parser working for Grace. Somehow, he had299

written this in his spare time! The Spoofax parser could handle essentially all the language as300

defined at the time, with the exception of Grace’s then ill-defined layout syntax rules: rather301

than relying on indentation and line breaks, Spoofax-Grace statements had to be terminated302

with semicolons, and there was no enforcement of Grace’s requirement that indentation be303

consistent with brace-structure.304

1 How wrong we were: pretty much every successful programming language since has been based on a
single canonical implementation.

CVIT 2016



23:8 The Importance of Being Eelco

3.2 Spoofax–Grace305

Eelco’s parser was then extended by Michiel Haisma for his Master’s thesis, resulting in a fairly306

complete implementation of the core of Grace completely within the Spoofax environment.307

(One of our initial goals for the Grace project was that the language should be implementable308

by a couple of graduate students in about a year: Haisma’s thesis demonstrates that this309

goal could be met by talented students using the right tools).310

Up to this point, Grace’s specification was informal, and existing implementations were311

hand-coded interpreters and compilers. The aim of Spoofax–Grace was not just to provide312

an implementation of the Grace programming language, but also to serve as a reference313

implementation that could be tested, and as a specification that could be easily read,314

understood and changed [18, 34, 19].315

Figure 1 shows the architecture of Spoofax–Grace. Spoofax’s SDF3 DSL [12] parses316

Grace code into an initial AST. Next, the Stratego transformation language rewrites some317

Grace constructs (such as classes and traits) that are actually defined in terms of simpler318

constructs (such as methods and objects) in a “desuguring” pass. A “lowering” pass then319

produces a canonical, fully decorated AST [7]. Finally, definitions in the DynSem DSL [35]320

are used to actually execute (i.e., interpret) the program represented by the lowered AST.321

2 1. Introduction

a parametrised JUnit [10] test runner. This file-based test suite for dynamic semantics testing is
joint work with Vlad Vergu.

The test suite will be used to evaluate this implementation. In addition, a part of the system will be
reviewed and compared to the informal language specification.

1.1. Architecture
A language implementation can be seen as a program (or a set of programs) that takes a program
written in a certain language –in this case Grace– and the inputs, and evaluates the program, possi-
bly generating some output. This includes any behavioural side-effects such as file IO or printing to
stdout. To accomplish this, the implementation of the language must read, internalise and execute
the program.
Spoofax Grace does this in four main steps: parsing, desugaring, lowering and evaluating. Each of
theses steps is guided through a declarative specification: Parsing is done according to the SDF3
grammar, transformation is done through the specified Stratego rules, and execution is performed
according to a DynSem specification. The programs that actually perform this are a proxy of these
specifications: The SGLR parser uses a parse table generated from the SDF3 grammar. The Stratego
rules are compiled to Java code, which is run after parsing. Finally the interpreter is generated from the
DynSem specification. The tools provided by the Spoofax language engineering workbench allow these
steps to be performed from a single environment. Generating the final interpreter from the DynSem
specification combines the parser, transformations and the interpreter and allows Grace programs to
be executed from single entry point.
The following diagram shows how these steps are implemented for Grace, these steps are explained
in the following sections:

Figure 1.1: Process showing the steps when evaluating a Grace program

1.1.1. Parsing
The first step of evaluating a Grace program, is to parse the program code. This parsing step will yield
a Grace AST that is used in subsequent steps. The grammar is specified in the SDF3 language, from
which a parse table is generated. Spoofax includes an SGLR parser which uses this parse table to
allow Grace programs to be parsed. Also, from the syntax definition, a number of AST signatures are
generated. These signatures are used in the transformation and execution stages. If the given Grace
program is syntactically valid and unambiguous, an AST is produced and passed on to the next stage:
desugaring.

1.1.2. Desugaring and lowering
After parsing, we apply a number of transformation steps to the AST. The result will still be a valid
Grace AST. These transformation rules are not very complicated, and are described as a number of
Stratego [19] rules and traversal strategies that dictate how these transformation rules should be applied
to the AST in what order.

Figure 1 Spoofax–Grace Architecture. From Michiel Haisma, “Grace in Spoofax” [18], used with
permission

Figure 2 shows the system running a simple Grace program inside Eclipse. The leftmost322

column contains the Eclipse explorer; the central window shows the Grace source code —323

pretty-printed and syntax-coloured automatically from the Spoofax definitions. The bottom324

window shows the output of the DynSem interpreter executing the Grace program — here,325

simply: true.326

The Spoofax–Grace project illuminated some details of the Grace specification as it327

existed at the time, and made us realize that the specification was not as precise as we328

had thought. One important area was the semantics of request resolution: the part of the329

language that had to combine the local definitions within an object, definitions inherited from330

superclasses, reused from traits, located in enclosing lexical scopes, or from the module’s331

dialect or prelude [22, 27]. Based upon Eelco’s theory of Scope Graphs [29, 32], Grace’s332

lookup semantics were encoded using the Spoofax DynSem DSL [35], as part of the overall333

operational semantics. The DynSem implementation was shorter and easier to modify than334

the existing Grace implementations [34], and also clarified that the computational complexity335

of a Grace method request in an object n nested levels deep, with p parent objects (traits336

and superclasses), was O(np).337

The Spoofax implementation of Grace was actually more general than we, as the designers338

of Grace, had ever intended. Because we had always planned for Grace to have a static339



A.P. Black and K.B. Bruce and J. Noble 23:9

Figure 2 Grace in Spoofax. Michiel Haisma, used with permission.

type system, it was important throughout the design that the shape of a Grace object — the340

methods and fields that it contained — could be determined statically. Although inherit and341

use statements describe the parent object (the object being reused) with expressions, we342

intended that these expressions be manifest, that is, evaluable statically. But the specification343

document didn’t make this clear enough, and Vergu et al. write: “The use of expressions to344

determine ancestors means that meaningful name resolution can only be performed at run345

time” [34]. The Spoofax implementation agreed with our prototype implementation in the346

sense that any Grace program that was accepted by the prototype gave the same results in347

Spoofax, but the Spoofax–Grace implementation allowed for reuse of objects whose shapes348

could not be ascertained until run time. This experience was enlightening to all involved,349

and made it clear to us that we needed to do some serious work on our language specification.350

In particular, we needed to overhaul the definition of manifest.351

The purpose of the Spoofax–Grace project was as much to evaluate the Spoofax toolset352

as the Grace specification. Other than the difficulty of handling layout, the toolset performed353

admirably: deficiencies of Grace-Spoofax (missing pattern matching, lack of a type system354

and static analyses) were due more to a lack of time, or to imprecision in the language355

specification, than to weaknesses in the tools. At the time, Spoofax was also competitive356

with the other Grace implementations in the time required to make a small change to the357

definition and rebuild the system (see fig. 3). Andrew ▶If this is important, we need to explain358

the numbers. Or, we could take it out.◀359

Looking back on this episode, one lesson that could be drawn is that a clear separation360

between static and dynamic semantics might have been beneficial to both language designers361

and to Spoofax users. There are places where the Grace specification deliberately leaves362

open the question of whether a check is static or dynamic, to allow the implementor more363

CVIT 2016



23:10 The Importance of Being Eelco

freedom. However, this should be done explicitly, as is done for, for example, type checks “364

The checks necessary to implement this guarantee [type safety] may be performed statically365

or dynamically”, and not by obscure phrasing or by omission. Another lesson is the value366

of the Agile practice of the on-site customer [2]: if the Grace and Spoofax teams had been367

co-located, this lack of clarity about what could be inherited would have been discovered368

much sooner.369

The Spoofax implementation of Grace is available [20], although not currently being370

maintained. It now also includes a version of a parser that can handle Grace’s layout, based on371

extensions to SDF3 to support indentation which were made while the main Spoofax–Grace372

project was coming to an end [12, 13].373

44 6. Evaluation

Table 6.1: Build times for Spoofax Grace

Part of implementation Time (separate) (s) Time (cumulative) (s)
Syntax 16 91
Transformations 26 75
Dynamic semantics 49 49

(about 1,5 seconds) than each subsequent test (about 0,1 second). This is expected to be because
of class loading and JVM compilation that only needs to be performed for the first test, and therefore
each subsequent test runs significantly (about 10×) faster.
It takes 45 seconds to run both test suites. The SPT tests take about 15 seconds, and the program
tests take about 30 seconds to run.
Running a single trivial Grace program takes a relatively long time because of its class loading and
initialisation. This can be offset by running the Grace interpreter continuously with a Nailgun [47] server,
this is supported by the generated interpreter.
In comparison to the other Grace implementation, the time required to rebuild Spoofax Grace is gen-
erally longer than for other implementations. For hopper, there is no need to rebuild, so this takes no
time. Kernan rebuilds very fast, taking about 2,5 seconds to rebuild. This holds for the initial build as
well as after a single change to the lexer. After a change to the dynamic semantics, a rebuild took
1,3 seconds.5 For Minigrace, a full build takes about 163 seconds, however, when a small change is
made to the lexer, a rebuild takes roughly 10 seconds and a change to the semantics (code generator)
a rebuild took 14 seconds.6 These build times can be reviewed in Table 6.2.

Table 6.2: Build times for Grace implementations

Implementation Time (initial) (s) Time (change lexer) (s) Time (change semantics) (s)
Spoofax 91 91 49
Hopper 0 0 0
Kernan 2,5 2,5 1,3
Minigrace 163 10 14

In the next chapter, we highlight work related to this project and discuss other Grace implementations.

5Achieved on an Intel i7-6700k (4.2GHz) with 16GB of RAM using XBuild version 14.0 and Mono version 4.8.1 on Ubuntu x64
16.04.2.

6Achieved on an Intel i7-6700k (4.2GHz) with 16GB of RAM using Node.js version 6.1.0 and NPM version 3.8.6 on Ubuntu x64
16.04.2.

Figure 3 Compile time. From Michiel Haisma, “Grace in Spoofax” [18], used with permission.

4 The Eelco Manifesto374

In the abstract, we made some presumptuous claims. If Eelco were still with us, we would375

do so cavalierly, knowing that Eelco would take our comments in good heart, and enjoy376

disputing with us. Sadly, that will not happen, so we proceed with more caution. We will do377

our best to justify these claims, and leave it to posterity to decide if they have value.378

4.1 Semantics and Syntax379

We are going to say it outright: syntax is important! Yes, semantics is important too, but380

the semantics has to be attached to something: syntax carries the semantics.381

In Spoofax, Eelco acknowledged the place of syntax. Parsing, pretty-printing, and editor382

support are important to the programmer. They are, or ought to be, the cornerstone of383

any language implementation. It is certainly possible to produce a language workbench384

that ignores syntax — the input language could be S-expressions — and focuses instead on385

semantics, optimizations, and execution. But that would have set aside a lot of what concerns386

users, and abdicated responsibility to help implementors in an area where tooling is both387

important and effective.388

4.2 Program Proofs vs. Working Code389

Looking through the proceedings of computer science conferences, where one used to find390

descriptions of working programming systems, one now finds descriptions of formal calculi —391

Featherweight Java, System F, and so on. One can see traces of this trend as far back as392

1979, when Dijkstra thought it appropriate to ridicule Teitelman’s Interlisp system because393

the “reference manual for Interlisp is already something like a two-inch thick telephone394

directory” [16]. Having an extensive library was apparently a fatal flaw in Dijkstra’s eye.395

Yes, there is value in formal calculi, and there is value in proofs of correctness. There is396

also value in complexity theory and in choosing an appropriate algorithm. But the reason397



A.P. Black and K.B. Bruce and J. Noble 23:11

that these things have value is because programs do stuff in the real world, and we want398

them to do the right stuff, and we want it done quickly.399

Eelco, as exemplified in Spoofax, was interested in a system that worked in the real400

world — for example, that integrated with Eclipse, and provided programmers with editing401

tools that were satisfying to use. Yes, the Spoofax tools were built on sound theoretical402

foundations. But foundations alone were not enough: they had to get work done.403

As language designers, we appreciate the value of formal systems. When one changes404

one’s grammar, it’s nice to know that the grammar remains unambiguous. When one changes405

one’s type system, it’s nice to know that the type system remains sound. But there is also406

enormous value in having a working implementation on which you can run examples. We407

can remember occasions where, after long discussions and some longer walks, we agreed on408

a change to Grace. Then one of us started programming in the revised language, and was409

forced to confront the consequences of the change! Of course, if we had only been smarter,410

we could perhaps have foreseen these consequences. Alas, we are who we are. Having an411

implementation that could quickly show us the consequences of a change, and show it on a412

sizable body of code, was of enormous value during the design process.413

4.3 Dijkstra and van Wijngaarden414

Although Adriaan van Wijngaarden was Edsger Dijkstra’s boss and academic supervisor, the415

two men could hardly have been more different. Let us concentrate here on two differences.416

First, where van Wijngaarden was an enthusiastic adopter of new technology, Dijkstra didn’t417

seem interested.418

This seems to be an odd comment to make about one of the pioneers of our science,419

but there is evidence aplenty. Dijkstra made pioneering contributions to the design of420

programming calculi and to the axiomatic method for reasoning about programs. But he421

seemed unwilling to accept that working to improve programming technology beyond the422

imperative languages where he made his mark was a worthwhile activity, not only for himself,423

but for anyone else! His dismissive review of John Backus’ Turning Award lecture [15] is a424

case in point; those interested in exploring this particular issue further should read the archive425

of the subsequent correspondence between Backus and Dijkstra [11]. Dijkstra’s point of view426

seemed to be that if only everyone were smarter, or thought more, or had more mathematical427

training, then the deficiencies of our science could be overcome. New technology was not428

required, and would not help: what was required was a new generation of better trained429

practitioners.430

Dijkstra’s is also famous for “writing for himself”, if possible by hand with a fountain431

pen, and eschewing the normal channels of publication in favour of privately distributing his432

manuscripts, known the world-over as “EWDs”.433

Van Wijngaarden was from a different mould. He enthusiastically adopted new technology434

where it would solve a recognized problem, and was ready to pioneer new technology. He435

was troubled by the inadequacy of BNF (developed for the definition of Algol 60) to express436

context conditions, and for the definition of Algol 68, he developed a new technology,437

the two-level grammar, that overcame this deficiency. (These grammars are now known438

as van Wijngaarden grammars, and have the power of Chomsky type 0 grammars (and439

thus of a Turning machine), although with a lot more convenience in use. [33]). Van440

Wijngaarden grammars may not have been the best solution, but they did implement the441

current practice adopted by static-semantics systems of storing environments of declared442

variables as concatenated lists, passing type information from the point of declaration to443

the point of use. Indeed, purely syntactic approaches to type soundness have essentially444

CVIT 2016



23:12 The Importance of Being Eelco

displaced all others [40, 23]. Two-level grammars also provided a mechanism for uniformly445

generating productions for sequences of entities, parenthesized entities, and so on, without446

inventing an unnecessary diversity of special-purpose notations [39]. Our point is that faced447

with a need, van Wijngaarden was willing to use, or invent technology to address it.448

Another instance of this, particularly appropriate in the face of Dijkstra’s preference for449

writing with a fountain pen, is Van Wijngaarden’s embrace of the IBM Selectric typewriter.450

In “A History of Algol 68”, Charles Lindsey writes:451

The use of a distinctive font to distinguish the syntax (in addition to italic for program452

fragments) commenced with [MR 93], using an IBM golf-ball typewriter with much453

interchanging of golf balls. Each time van Wijngaarden acquired a new golf ball, he454

would find some place in the Report where it could be used (spot the APL golf ball455

in the representations chapter). In fact, he did much of this typing himself (including456

the whole of [MR 101]).457

Van Wijngaarden may have done the typing himself because of the inability of the typists458

at the Mathematisch Centrum to distinguish a roman period “.” from an italic period “.” [10]).459

Eelco was a man very much in the van Wijngaarden mould — in attitudes and interactions,460

if not in as nattily dressed. He was willing and able to harness technology to get things done.461

He genuinely cared for those around him, be they students or colleagues. And he created an462

institution — his research group at Delft — that reified those values.463

5 Conclusion464

In conclusion, it is appropriate to point out that Eelco was a kind man and a sympathetic465

colleague. His accomplishments may have give him some reason to be arrogant, but to our466

recollection, he never was. Instead of belittling those who did not or could not follow, he467

gave them a helping hand. One of us treasures happy memories of a visit to Delft, arranged468

by Eelco as a means to pay for a trip to SPLASH in Amsterdam, rich with interactions with469

the members of his group, after which we rode our bikes around Delft with some students.470

He was endlessly patient as the Grace authors tried to come to grips with Spoofax, and471

contributed in many other ways to the success of our profession, in particular by supporting472

SIGPLAN conferences with the conf.researchr.org website, and of course by helping to create473

and chair IFIP WG 2.16.474

Eelco will be sorely missed.475

References476

1 Eli Barzilay. Racket, June 2010. https://blog.racket-lang.org/2010/06/racket.html.477

2 Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.478

3 Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble. Grace: the absence of479

(inessential) difficulty. In Onward! ’12: Proceedings 12th SIGPLAN Symp. on New Ideas in480

Programming and Reflections on Software, pages 85–98, New York, NY, 2012. ACM. URL:481

http://doi.acm.org/10.1145/2384592.2384601.482

4 Andrew P. Black, Kim B. Bruce, and James Noble. Panel: designing the next educational483

programming language. In SPLASH/OOPSLA Companion, 2010.484

5 Gilad Bracha. On the interaction of method lookup and scope with inheritance and nesting.485

In 3rd ECOOP Workshop on Dynamic Languages and Applications, 2007.486

6 Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Stratego/XT 0.17:487

A language and toolset for program transformation. Sci. of Comp. Programming, 72(1-2):52–70,488

June 2008.489

https://blog.racket-lang.org/2010/06/racket.html
http://doi.acm.org/10.1145/2384592.2384601


A.P. Black and K.B. Bruce and J. Noble 23:13

7 Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Stratego/XT490

0.17. A language and toolset for program transformation. Science of Computer Programming,491

72(1-2):52–70, 2008.492

8 Kim Bruce, Andrew Black, Michael Homer, James Noble, Amy Ruskin, and Richard Yannow.493

Seeking Grace: a new object-oriented language for novices. In Proceedings 44th SIGCSE494

Technical Symposium on Computer Science Education, pages 129–134. ACM, 2013. doi:http:495

//dx.doi.org/10.1145/2445196.2445240.496

9 Kim Bruce, Andrew Black, Michael Homer, James Noble, Amy Ruskin, and Richard Yannow.497

Seeking Grace: a new object-oriented language for novices. In SIGCSE, 2013.498

10 Centrum Wiskunde & Informatica. Memories of Aad van Wijngaarden (1916-1987), November499

2016. https://www.youtube.com/watch?v=okLiv1QA4Dg.500

11 Jiahao Chen. “This guy’s arrogance takes your breath away”: Letters between John W Backus501

and Edsger W Dijkstra, 1979. Blog entry, May 2016. https://medium.com/@acidflask/502

this-guys-arrogance-takes-your-breath-away-5b903624ca5f. URL: https://medium.503

com/@acidflask/this-guys-arrogance-takes-your-breath-away-5b903624ca5f [cited 20504

Nov 2022].505

12 Luís Eduardo de Souza Amorilm and Eelco Visser. Multi-purpose syntax definition with sdf3.506

In Software Engineering and Formal Methods, 2020.507

13 Luís Eduardo de Souza Amorim, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser.508

Declarative specification of indentation rules: a tooling perspective on parsing and pretty-509

printing layout-sensitive languages. In SLE, 2018.510

14 Charles Dierbach. Python as a first programming language. J. Comput. Sci. Coll.,511

29(6):153–154, jun 2014.512

15 E.W. Dijkstra. A review of the 1977 Turing award lecture by John Backus (EWD692).513

Edsger W. Dijkstra Archive at Univ. Texas, Undated, around November 1978. https://514

www.cs.utexas.edu/users/EWD/ewd06xx/EWD692.PDF. URL: https://www.cs.utexas.edu/515

users/EWD/ewd06xx/EWD692.PDF.516

16 E.W. Dijkstra. Trip report E.W.Dijkstra, Mission Viejo, Santa Cruz, Austin, 29 July –517

8 September 1979 (EWD714). Edsger W. Dijkstra Archive at Univ. Texas, September518

1979. https://www.cs.utexas.edu/users/EWD/ewd07xx/EWD714.PDF. URL: https://www.519

cs.utexas.edu/users/EWD/ewd07xx/EWD714.PDF.520

17 Diwaker Gupta. What is a good first programming language? ACM Crossroads, 10(4):7, aug521

2004.522

18 Michiel Haisma. Grace in Spoofax. Master’s thesis, TUDelft, May 2017.523

19 Michiel Haisma, Vlad Vergu, and Eelco Visser. Grace in spoofax:524

Readable specification and implementation in one. In GRACE work-525

shop at ECOOP, July 2016. 2016.ecoop.org/details/GRACE-2016/2/526

Grace-in-Spoofax-Readable-Specification-and-Implementation-in-One.527

20 Michiel Haisma, Vlad Vergu, and Eelco Visser. Spoofax-based implementation of the Grace528

language, February 2017. github.com/MetaBorgCube/metaborg-grace.529

21 C.A.R. Hoare. Hints on programming language design. Technical Report AIM-224, Stanford530

Artificial Intelligence Laboratory, December 1973.531

22 Michael Homer, Timothy Jones, James Noble, Kim B Bruce, and Andrew P Black. Graceful532

dialects. In Richard Jones, editor, ECOOP, volume 8586 of LNCS, pages 131–156. Springer,533

2014.534

23 Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: a minimal core535

calculus for Java and GJ. TOPLAS, 23(3):396–450, 2001. URL: http://doi.acm.org/10.536

1145/503502.503505.537

24 Laserfiche contributor. How your first programming language warps your brain, n.d. www.538

laserfiche.com/ecmblog/programming-languages-change-brain/, accessed 17 Nov 2022.539

25 Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-Oriented540

Programming in the BETA Programming Language. Addison-Wesley, 1993.541

CVIT 2016

https://doi.org/http://dx.doi.org/10.1145/2445196.2445240
https://doi.org/http://dx.doi.org/10.1145/2445196.2445240
https://doi.org/http://dx.doi.org/10.1145/2445196.2445240
https://www.youtube.com/watch?v=okLiv1QA4Dg
https://medium.com/@acidflask/this-guys-arrogance-takes-your-breath-away-5b903624ca5f
https://medium.com/@acidflask/this-guys-arrogance-takes-your-breath-away-5b903624ca5f
https://medium.com/@acidflask/this-guys-arrogance-takes-your-breath-away-5b903624ca5f
https://medium.com/@acidflask/this-guys-arrogance-takes-your-breath-away-5b903624ca5f
https://medium.com/@acidflask/this-guys-arrogance-takes-your-breath-away-5b903624ca5f
https://medium.com/@acidflask/this-guys-arrogance-takes-your-breath-away-5b903624ca5f
https://www.cs.utexas.edu/users/EWD/ewd06xx/EWD692.PDF
https://www.cs.utexas.edu/users/EWD/ewd06xx/EWD692.PDF
https://www.cs.utexas.edu/users/EWD/ewd06xx/EWD692.PDF
https://www.cs.utexas.edu/users/EWD/ewd06xx/EWD692.PDF
https://www.cs.utexas.edu/users/EWD/ewd06xx/EWD692.PDF
https://www.cs.utexas.edu/users/EWD/ewd06xx/EWD692.PDF
https://www.cs.utexas.edu/users/EWD/ewd07xx/EWD714.PDF
https://www.cs.utexas.edu/users/EWD/ewd07xx/EWD714.PDF
https://www.cs.utexas.edu/users/EWD/ewd07xx/EWD714.PDF
https://www.cs.utexas.edu/users/EWD/ewd07xx/EWD714.PDF
2016.ecoop.org/details/GRACE-2016/2/Grace-in-Spoofax-Readable-Specification-and-Implementation-in-One
2016.ecoop.org/details/GRACE-2016/2/Grace-in-Spoofax-Readable-Specification-and-Implementation-in-One
2016.ecoop.org/details/GRACE-2016/2/Grace-in-Spoofax-Readable-Specification-and-Implementation-in-One
github.com/MetaBorgCube/metaborg-grace
http://doi.acm.org/10.1145/503502.503505
http://doi.acm.org/10.1145/503502.503505
http://doi.acm.org/10.1145/503502.503505
www.laserfiche.com/ecmblog/programming-languages-change-brain/
www.laserfiche.com/ecmblog/programming-languages-change-brain/
www.laserfiche.com/ecmblog/programming-languages-change-brain/


23:14 The Importance of Being Eelco

26 James Noble and Robert Biddle. programmingLanguage as Language;, June 2021. https:542

//hopl4.sigplan.org/details/hopl-4-papers/21/programmingLanguage-as-Language-.543

27 James Noble, Andrew P. Black, Kim B. Bruce, Michael Homer, and Timothy Jones. Grace’s544

inheritance. Journal of Object Technology, 16(2):2:1–35, April 2017.545

28 James Noble, Michael Homer, Kim B. Bruce, and Andrew P. Black. Designing Grace: Can546

an introductory programming language support the teaching of software engineering. In547

IEEE Conference on Software Engineering Education and Training (CSEE&T), 2013. URL:548

http://gracelang.org/documents/cseet13main-id92-p-16403-preprint.pdf.549

29 Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A theory of name550

resolution. In ESOP, pages 205–231, 2015.551

30 Simon, Raina Mason, Tom Crick, James H. Davenport, and Ellen Murphy. Language choice552

in introductory programming courses at Australasian and UK universities. In SIGCSE, page553

852–857, 2018.554

31 Tiobe index for june 2022. https://www.tiobe.com/tiobe-index/, 2022.555

32 Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachs-556

muth. A constraint language for static semantic analysis based on scope graphs. In PEPM,557

pages 49–60, 2016.558

33 Adriaan van Wijngaarden. The generative power of two-level grammars. In ICALP, 1974.559

34 Vlad Vergu, Michiel Haisma, and Eelco Visser. The semantics of name resolution in Grace. In560

DLS, pages 63–74, 2017.561

35 Vlad A. Vergu, Pierre Néron, and Eelco Visser. Dynsem: A DSL for dynamic semantics562

specification. In 26th Int. Conf. Rewriting Techniques and Applications (RTA ’15, pages563

365–378, 2015.564

36 Eelco Visser. A family of syntax definition formalisms. Technical Report P9706, Progr.565

Research Group, University of Amsterdam, July 1997.566

37 Richard L. Wexelblat. The consequences of one’s first programming language. In SIGSMALL,567

page 52–55, 1980.568

38 Wikipedia. Java version history, November 2022. en.wikipedia.org/wiki/Java_version_569

history.570

39 Niklaus Wirth. What can we do about the unnecessary diversity of notation for syntactic571

definitions? CACM, 20(11):822–823, 1977.572

40 A.K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and573

Computation, 115(1):38–94, nov 1994.574

https://hopl4.sigplan.org/details/hopl-4-papers/21/programmingLanguage-as-Language-
https://hopl4.sigplan.org/details/hopl-4-papers/21/programmingLanguage-as-Language-
https://hopl4.sigplan.org/details/hopl-4-papers/21/programmingLanguage-as-Language-
http://gracelang.org/documents/cseet13main-id92-p-16403-preprint.pdf
https://www.tiobe.com/tiobe-index/
en.wikipedia.org/wiki/Java_version_history
en.wikipedia.org/wiki/Java_version_history
en.wikipedia.org/wiki/Java_version_history

	1 Introduction
	1.1 A Short History of Grace
	1.2 A Short History of Spoofax

	2 A Little Grace
	2.1 Objects and Classes
	2.2 Syntax and Layout
	2.3 Nesting and Inheritance

	3 Grace in Spoofax
	3.1 SDF2 Grace Parser
	3.2 Spoofax–Grace

	4 The Eelco Manifesto
	4.1 Semantics and Syntax
	4.2 Program Proofs vs. Working Code
	4.3 Dijkstra and van Wijngaarden

	5 Conclusion

